Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur Respir J ; 61(5)2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36922030

RESUMO

BACKGROUND: COVID-19 is associated with a dysregulated immune response but it is unclear how immune dysfunction contributes to the chronic morbidity persisting in many COVID-19 patients during convalescence (long COVID). METHODS: We assessed phenotypical and functional changes of monocytes in COVID-19 patients during hospitalisation and up to 9 months of convalescence following COVID-19, respiratory syncytial virus or influenza A. Patients with progressive fibrosing interstitial lung disease were included as a positive control for severe, ongoing lung injury. RESULTS: Monocyte alterations in acute COVID-19 patients included aberrant expression of leukocyte migration molecules, continuing into convalescence (n=142) and corresponding with specific symptoms of long COVID. Long COVID patients with unresolved lung injury, indicated by sustained shortness of breath and abnormal chest radiology, were defined by high monocyte expression of C-X-C motif chemokine receptor 6 (CXCR6) (p<0.0001) and adhesion molecule P-selectin glycoprotein ligand 1 (p<0.01), alongside preferential migration of monocytes towards the CXCR6 ligand C-X-C motif chemokine ligand 16 (CXCL16) (p<0.05), which is abundantly expressed in the lung. Monocyte CXCR6 and lung CXCL16 were heightened in patients with progressive fibrosing interstitial lung disease (p<0.001), confirming a role for the CXCR6-CXCL16 axis in ongoing lung injury. Conversely, monocytes from long COVID patients with ongoing fatigue exhibited a sustained reduction of the prostaglandin-generating enzyme cyclooxygenase 2 (p<0.01) and CXCR2 expression (p<0.05). These monocyte changes were not present in respiratory syncytial virus or influenza A convalescence. CONCLUSIONS: Our data define unique monocyte signatures that define subgroups of long COVID patients, indicating a key role for monocyte migration in COVID-19 pathophysiology. Targeting these pathways may provide novel therapeutic opportunities in COVID-19 patients with persistent morbidity.


Assuntos
COVID-19 , Influenza Humana , Lesão Pulmonar , Humanos , Monócitos/metabolismo , Quimiocinas CXC/metabolismo , Receptores Virais/metabolismo , Receptores CXCR6 , Receptores de Quimiocinas/metabolismo , Síndrome Pós-COVID-19 Aguda , Ligantes , Convalescença , Receptores Depuradores/metabolismo , Quimiocina CXCL16 , Gravidade do Paciente
2.
Mucosal Immunol ; 14(3): 717-727, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33414524

RESUMO

Innate lymphoid cells (ILCs) are enriched in mucosae and have been described as tissue-resident. Interestingly, ILCs are also present within lymph nodes (LNs), in the interfollicular regions, the destination for lymph-migratory cells. We have previously shown that LN ILCs are supplemented by peripheral tissue-derived ILCs. Using thoracic duct cannulations, we here enumerate the intestinal lymph ILCs that traffic from the intestine to the mesenteric LNs (MLNs). We provide, for the first time, a detailed characterisation of these lymph-migratory ILCs. We show that all ILC subsets migrate in lymph, and while global transcriptional analysis reveals a shared signature with tissue-resident ILCs, lymph ILCs express migration-associated genes including S1PRs, SELL (CD62L) and CCR7. Interestingly, we discovered that while Salmonella Typhimurium infections do not increase the numbers of migrating ILCs, infection changes their composition and cytokine profile. Infection increases the proportions of RORyt+ T-bet+ ILCs, levels of IFNγ, and IFNγ/GM-CSF co-expression. Infection-induced changes in migratory ILCs are reflected in colon-draining MLN ILCs, where RORyt+ T-bet+ ILCs accumulate and display corresponding increased cytokine expression. Thus, we reveal that ILCs respond rapidly to intestinal infection and can migrate to the MLN where they produce cytokines.


Assuntos
Mucosa Intestinal/imunologia , Linfonodos/imunologia , Linfa/imunologia , Linfócitos/imunologia , Infecções por Salmonella/imunologia , Salmonella typhimurium/fisiologia , Animais , Movimento Celular , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Humanos , Imunidade Inata , Interferon gama/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/genética
3.
J Immunol ; 202(1): 260-267, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30487173

RESUMO

Salmonella infection is a globally important cause of gastroenteritis and systemic disease and is a useful tool to study immune responses in the intestine. Although mechanisms leading to immune responses against Salmonella have been extensively studied, questions remain about how bacteria travel from the intestinal mucosa to the mesenteric lymph nodes (MLN), a key site for Ag presentation. In this study, we used a mouse model of infection with Salmonella enterica serovar Typhimurium (STM) to identify changes in intestinal immune cells induced during early infection. We then used fluorescently labeled STM to identify interactions with immune cells from the site of infection through migration in lymph to the MLN. We show that viable STM can be carried in the lymph by any subset of migrating dendritic cells but not by macrophages. Moreover, approximately half of the STM in lymph are not associated with cells at all and travel autonomously. Within the MLN, STM associates with dendritic cells and B cells but predominantly with MLN-resident macrophages. In conclusion, we describe the routes used by STM to spread systemically in the period immediately postinfection. This deeper understanding of the infection process could open new avenues for controlling it.


Assuntos
Células Dendríticas/imunologia , Mucosa Intestinal/microbiologia , Linfonodos/microbiologia , Macrófagos/imunologia , Mesentério/imunologia , Salmonella typhi/fisiologia , Febre Tifoide/imunologia , Animais , Células Dendríticas/microbiologia , Modelos Animais de Doenças , Interações Hospedeiro-Patógeno , Humanos , Mucosa Intestinal/imunologia , Linfonodos/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Febre Tifoide/microbiologia
4.
Sci Transl Med ; 10(464)2018 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-30355800

RESUMO

Macrophages in the healthy intestine are highly specialized and usually respond to the gut microbiota without provoking an inflammatory response. A breakdown in this tolerance leads to inflammatory bowel disease (IBD), but the mechanisms by which intestinal macrophages normally become conditioned to promote microbial tolerance are unclear. Strong epidemiological evidence linking disruption of the gut microbiota by antibiotic use early in life to IBD indicates an important role for the gut microbiota in modulating intestinal immunity. Here, we show that antibiotic use causes intestinal macrophages to become hyperresponsive to bacterial stimulation, producing excess inflammatory cytokines. Re-exposure of antibiotic-treated mice to conventional microbiota induced a long-term, macrophage-dependent increase in inflammatory T helper 1 (TH1) responses in the colon and sustained dysbiosis. The consequences of this dysregulated macrophage activity for T cell function were demonstrated by increased susceptibility to infections requiring TH17 and TH2 responses for clearance (bacterial Citrobacter rodentium and helminth Trichuris muris infections), corresponding with increased inflammation. Short-chain fatty acids (SCFAs) were depleted during antibiotic administration; supplementation of antibiotics with the SCFA butyrate restored the characteristic hyporesponsiveness of intestinal macrophages and prevented T cell dysfunction. Butyrate altered the metabolic behavior of macrophages to increase oxidative phosphorylation and also promoted alternative macrophage activation. In summary, the gut microbiota is essential to maintain macrophage-dependent intestinal immune homeostasis, mediated by SCFA-dependent pathways. Oral antibiotics disrupt this process to promote sustained T cell-mediated dysfunction and increased susceptibility to infections, highlighting important implications of repeated broad-spectrum antibiotic use.


Assuntos
Antibacterianos/farmacologia , Homeostase/efeitos dos fármacos , Imunidade Inata/efeitos dos fármacos , Intestinos/citologia , Macrófagos/metabolismo , Linfócitos T/imunologia , Animais , Butiratos/farmacologia , Citocinas/metabolismo , Ácidos Graxos/metabolismo , Microbioma Gastrointestinal/efeitos dos fármacos , Inflamação/patologia , Lipopolissacarídeos/farmacologia , Macrófagos/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Receptores CCR2/metabolismo , Linfócitos T/efeitos dos fármacos , Células Th1/efeitos dos fármacos
5.
Eur J Immunol ; 47(12): 2101-2112, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28857172

RESUMO

The IL-1 family member IL-36α has proinflammatory and pathogenic properties in psoriasis. IL-36α binds to the IL-36 receptor leading to nuclear factor kappa B/mitogen activated protein kinase mediated cytokine release. The IL-36R antagonist prevents recruitment of IL-1 receptor accessory protein and therefore IL-36-dependent cell activation. In inflamed human tissue, we previously could show that resident B cells and plasma cells (PC) express IL-36α. Further, fibroblast-like synoviocytes (FLS) produced proinflammatory cytokines upon IL-36α-stimulation. We hypothesize an IL-36-specific crosstalk between B cells/PCs and FLS permitting a proinflammatory B cell niche. Here, we firstly demonstrated that B cell lines and B cells from healthy donors express IL-36α and stimulation increased IL-36α in B cells and primary plasmablasts/PCs. Moreover, FLS respond specifically to IL-36α by proliferation and production of matrix metalloproteinases via p38/HSP27 signaling. Importantly, IL-36R-deficiency abrogated IL-36α-induced production of inflammatory mediators in FLS and changed the intrinsic FLS-phenotype. Using an in vitro co-culture system, we could show that IL-36R-deficient FLS had a limited capacity to support PC survival compared to wild-type FLS. Hence, we demonstrated an IL-36R-dependent crosstalk between B cells/PCs and FLS. Our data support the concept of initiation and maintenance of a proinflammatory niche by B cells in the joints.


Assuntos
Fibroblastos/imunologia , Plasmócitos/imunologia , Receptores de Interleucina-1/imunologia , Membrana Sinovial/imunologia , Animais , Linhagem Celular , Linhagem Celular Tumoral , Células Cultivadas , Técnicas de Cocultura , Citocinas/genética , Citocinas/imunologia , Citocinas/metabolismo , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Expressão Gênica/imunologia , Humanos , Interleucina-1/genética , Interleucina-1/metabolismo , Interleucina-1/farmacologia , Células Jurkat , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células NIH 3T3 , Plasmócitos/metabolismo , Receptores de Interleucina-1/genética , Receptores de Interleucina-1/metabolismo , Membrana Sinovial/citologia , Membrana Sinovial/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...